

The optimum heat exchanger as:

- Vent Condensers
- •Reboilers/Vaporizers •Liquefied Gas Vaporizers

- Liquefied Gas Vaporizers
 Process Condensers
 High Pressure Exchangers
 Hydraulic/Lube Oil Coolers
 High Temperature Exchangers
 Cryogenic Exchangers
 Compressor Inter/After Coolers
 Sample Coolers
 Hat Water Vastare
- •Hot Water Heaters

High efficiency

Helifi W

Graham Corporation – a world leader. Graham Corporation is a leader in heat transfer and vacuum equipment used worldwide in the process, power, marine, and commercial industries. We offer complete single-source reliability with our in-house research and development, design engineering, manufacturing and testing facilities – plus a worldwide sales force.

We guarantee the performance of our Heliflow Heat Exchangers, Plate Heat Exchangers, MicroMix [®]II Water Heaters, Steam Surface Condensers, Steam Jet Ejectors, Steam Vacuum Refrigeration, Liquid Ring Vacuum Pumps, Fume Scrubbers, Desuperheaters, and Atmospheric Relief Valves.

We build to the highest quality standards and the world's most exacting codes.

Graham is headquartered in Batavia, New York, has another plant in Great Britain, and associated fabricators worldwide.

Exclusive, state-of-the-art design. A unique design that makes HELIFLOW Heat Exchangers exceptionally compact, strong, efficient, reliable, versatile, and able to handle a wide range of flow, pressure and temperature requirements. They have had years of proven service in thousands of applications throughout the world, with high quality performance always guaranteed.

Simplicity. The Heliflow encompasses a spiral coil, comprised of multiple parallel tubes mounted within a casing and baseplate. The case/coil construction creates a spiral flow path for both the fluid inside and outside of the tube coil, providing true counterflow.

An accurate, constant velocity is maintained. Coil spacing between tubes may be varied for an optimal balance of thermal and hydraulic requirements. This provides maximum, more consistent heat transfer efficiency.

COMPACT, LIGHTWEIGHT VERSATILITY: Heliflows function in any position – up, down, sideways, or in between – in a fraction of the space of typical shell and tube exchangers. Mount on columns, nozzles, engines, walls, ceilings, or in-line without additional support. A Heliflow can fit where others can't, with no draining problem.

HIGH EFFICIENCY: True counter- flow and improved heat transfer rates allow heat exchange up to 40% greater than comparable shell and tube designs. Close temperature approach can be maintained even with temperatures crossed. No baffles or sharp turns can interrupt flow velocity. No matter how small the design rate of flow, correct velocity can be designed and maintained.

BROAD CAPABILITIES: The Heliflow Heat Exchanger with its spring-like coils, absorbs mechanical and thermal stresses, minimizing strain on the tube connections. This feature enables the Heliflow to operate in pressure services exceeding 10,000 psig, and temperature gradients of 500 °F between the two fluids.

SIMPLE RELIABILITY: Heliflow's design, simplicity, and strength enhance its performance, reliability and lasting value. It's more trouble-free. Coils can be cleaned or changed easily. There's less maintenance and downtime.

COST SAVINGS: Considerable time and money are saved due to Heliflow's simple, compact, light-weight, versatile, and trouble-free design – and their ease of installation and maintenance.

WIDE CHOICES: Heliflows are readily available in 80 standard models. Heat transfer surfaces can range from 1 to 650 sq. ft.

EASILY CUSTOMIZED: For special, unique or lethal applications, Graham can custom-design Heliflows in a wide range of designs, construction codes and materials, including non-ferrous, stainless steel, titanium, and many high-nickel and specialty alloys.

Standard or Customized

Thousands of GRAHAM HELIFLOW Heat Exchangers have been in service for years throughout the world.

High-pressure, high-temperature Heliflow's unique coil design allows it to operate under extremes of both pressure and temperature.

Due to this proven capability, Heliflows are frequently used as:

- Vent Condensers
- Sample Coolers
- Hot Water Heaters
- Reboilers/Vaporizers
- Process Condensers
- Liquefied Gas Vaporizers
- High Pressure Exchangers
- Hydraulic/Lube Oil Coolers
- High Temperature Exchangers
- Cryogenic Exchangers
- Compressor Inter/After Coolers
- Seal Coolers

HELIFLOW OPERATION

The simple logic of heat transfer.

The unique spiral coil design provides a constant flow pattern with uninterrupted velocity throughout the entire flow path around and through each tube. This assures maximum heat transfer efficiencies.

Vent Condensers

Heliflow's unique, compact features make it ideal for vent condensing applications. With simple design modifications, it's ideal for:

- internal or external mounting
- condensate return, recovery or
- removal
- solvent recovery
- overcoming environmental concerns

Sample Coolers

Heliflows have long demonstrated their ability to meet the demands of:

- extreme temperature and pressure variations
- low flow, and on/off or continuous operation

Instantaneous Water Heaters

Heliflow's compactness and high efficiency make it an ideal heat exchanger for the GRAHAM Micro-Mix II steam-water heater. High output capacities are achieved using less than 6 sq. ft. of floor space.

Heating and Cooling

Heliflows are well-proven as compact, economical designs ideal for most industrial heat exchanger needs – extensively used for:

• pharmaceuticals, paints, solvents, organics, acids, oils, heat transfer fluids, gases, steam, etc.

Vaporizers

Heliflows have proven to be superior vaporizers – extensively used for vaporization of deionized water, aqueous solutions, ammonia, nitrogen, oxygen, liquefied gases, and solvents – using steam, water, solvents, glycols and heat transfer fluids as the heating medium.

Cryogenic Coolers

The Heliflow's ability to absorb thermal stresses proves ideal in low-temperature operation. Heliflows can utilize the vaporization of liquefied gases, refrigerants or other cryogenic fluids of sub-zero cooling of process fluids, solvent recovery, vent gas condensation, and other lowtemperature industrial cooling operations.

Interchangers

The Heliflow's spiral coil design provides for temperature extremes. Heat recovery efficiencies are maximized and many process applications – including oil reprocessing, heat transfer fluid systems, and others – where extremes of temperature are frequently encountered.

Pure/Deionized Steam Generators

Heliflows can use boiler steam to produce pure, uncontaminated water vapor for humidification systems and other processes requiring chemically pure steam.

Process Condensers

The Heliflow's reverse and through manifold design provides a condenser of multiple orientation, utilization, compactness, and an ideal condensing surface for:

- reflux condensing, solvent recovery condensation and separation of
- condensibles from noncondensibles

Pump Seal Coolers

Mechanical seals used on mediumand high-temperature pumps require that the seal fluid be cooled to ensure proper seal operation. Heliflows provide this cooling – efficiently, economically, and in less space.

Bare Tube Heliflow

For heat transfer from one fluid to another. Unique design includes a spiral coil (in commercially available tube materials from ¼" to ¾" diameter) mounted within a casing and baseplate. Components are oriented so the casing/coil configuration creates a spiral flow path for the fluid outside the coil, which flows counter to the fluid inside the coil. There are no inactive areas. With the spiral coil design, dead spaces do not exist and an accurate. constant velocity is maintained throughout the path of flow through and around each coil. The coil spacing between the tubes can be varied to provide specific fluid velocities for the fluid outside the coil, optimizing heat transfer and pressure drop. An outstanding feature is the inherent strength of the manifold design. With the elimination of the typical tube sheet and bonnet construction, the Heliflow heat exchanger economically provides for extremes of pressure and temperature.

Custom Heliflows

Guaranteed to meet specifications for any unique, special or lethal applications. Our wide range of standard Heliflows are available in most commercial tube materials to satisfy 90 percent of industry's pressures to 7,500 psig. Special design can accommodate design pressure to at least 10,000 psig. Multi-pass tube side, reverse and through manifolds, special fittings, pipe connections and other special arrangements are available.

Vented Double-Wall Heliflows

Ideal for detection and prevention of cross contamination. This vented, double-wall and double-manifold "tube-ina-tube" design has a vented pathway between the hot and cold fluids. High thermal efficiency is maintained while providing protection and detection against cross contamination. Ideal where process purity is mandatory and when required by state and local regulations for the protection of domestic and potable waters.

Static Mixer Heliflows

For high-viscosity fluids, the Heliflow's efficiency is enhanced by use of static mixers. Elements in each tube increase fluid mixing and maximize heat transfer, thereby reducing the required surface area.

Polished Tube Heliflows

All internal surfaces are highly polished. This makes it an ideal exchanger for applications requiring clean heat transfer – pharmaceutical, computer/ electronics, deionized water and other clean operations.

Replacements and Shipments

No Graham product ever becomes an orphan. Replacement parts and assistance are always available. Anywhere. Parts and complete standard units are available off-the-shelf. And a stock of finished and semi-finished parts for special sizes are always available. Prompt shipment is assured. And we airfreight to any part of the world when necessary. **More Information**

A Heliflow Operation & Maintenance Manual is available on request. It contains detailed instructions on how to best install, operate, and maintain Heliflows for optimum and lasting heat transfer. It also includes tips to speed up disassembly and re-assembly. For a free copy, see your Graham representative or contact Graham Corporation.

HELIFLOW CONSTRUCTION

Simple reliability

- 1. Base Plate Nuts secure the single flanged joint. *Typical* shell and tube units have four such joints.
- Heavy-duty Manifold Holding Nuts and locking rings tightly secure both manifolds to hold the coil assembly to the base plate.
- Gaskets insure tightly sealed joint between manifold and base plate.
- Upper and Lower Manifold precision-made for rigid, heavy-duty performance.
- 5. **Coil Manifold Assembly** precision-built to assure high heat transfer efficiency, 100% effective counterflow, and more trouble-free performance.
- 6. **Single-piece Gasket** available in any material that best meets operating conditions.
- 7. Heavy-Duty Casing Studs for high-pressure reliability.
- One-Piece Casing can be removed for easy cleaning without breaking any pipe connections.
- 9. Threaded Vent and Drain Plugs designed and located for easy use and access.
- **10.Support Bracket** can be placed in several positions for convenience.

MAINTENANCE & SERVICE Reliable simplicity

Cleaning a Heliflow is as simple as its construction. No special tools or fixtures are required. It takes only 1/4th the time, and there is little or no risk of damage compared to cleaning requirements for straight-tube exchangers. Operation is based on the premise that the fluid circulating in the casing will have fouling tendencies, while the fluid circulating inside the coils is cleaner. If the fluid inside the coils eventually fouls, and chemical cleaning cannot be used, replacing coils is fast and easy. The outside of the coils can be inspected and cleaned easily by removing the casing.

To disassemble, follow these steps:

- A. Disconnect all pipes.
- B. Remove all base plate nuts.
- C. Separate the case from the base, being careful not to damage the casing gasket.
- D. Remove manifold holding nuts. Remove the integral manifolds and coil assembly from the base plate.
- E. When re-assembling, remember the spark plug type gaskets between the manifold collars and the base plate ... and the lock rings between the manifold nuts and base plate. These locking nuts prevent manifolds from turning when pulling up gaskets and re-piping.

Graham designed, manufactured, tested and guaranteed. A Real Graham Advantage.

Process vacuum condensers

Vacuum refrigeration systems

Heliflow® heat exchangers

Building engineered solutions

Vacuum pump packaged systems

for the process, power, pharmaceutical and

Liquid ring vacuum pumps

commercial industries, worldwide.

MicroMix® II instantaneous steam water heaters

Steam surface condensers

Dry vacuum pumps

ONE SOURCE – DESIGNED, BUILT AND TESTED.

Graham VacWorks IItm Design Program. A CD-ROM loaded with comprehensive vacuum system design software and technical support information. Providing many engineered solutions for your vacuum system needs.

Graham Corporation 20 Florence Ave., Batavia, NY 14020 USA Phone: 585-343-2216 FAX: 585-343-1097 Web site: <u>http://www.graham-mfg.com</u> Email: <u>equipment@graham-mfg.com</u>

HOW TO RATE HELIFLOW FOR LIQUID TO LIQUID SERVICE

This example will be worked out to illustrate use of the data on the following pages:

Cool 20 gpm of 100% Ethylene Glycol from 200°F. to 175°F. with 20 gpm of 70°F. water

First, determine the properties of the fluid

100% Ethylene Glycol's thermal conductivity is 0.137, specific heat .64, specific gravity, 1.064

Now calculate the duty.

Q = (gpm) (500) (sp. gr.) (sp. ht.) (temp. diff.)Q = (20) (500) (1.064) (.64) (200 - 175) = 170,240 btu/hr

Next, calculate water temperature rise.

 $\frac{170,240}{(20) (500) (1) (1)} = \frac{17.0^{\circ} \text{ Water outlet temperature}}{\text{will be } 87.0^{\circ}\text{F}}$

Now calculate LMTD =

(Greater temp. diff.) - (Lesser temp. diff.) Log (Greater temp. diff.) (Lesser temp. diff.)

$$LMTD = \frac{(200 - 87.0) - (175 - 70)}{Log (200 - 87.0)} = 108.9$$

It is now necessary to assume a heat transfer rate and calculate an approximate heat transfer surface requirement. Since 100% Ethylene Glycol's thermal conductivity is about 0.4 times that of water. U will be assumed as (0.4) (500) = 200. An overall heat transfer rate for water to water service is assumed to be 500.

Heat transfer surface =
$$\frac{Q}{(LMTD)} = \frac{170,240}{(108.9)(200)} = 7.8 \text{ ft}^2$$

From the pages 2 and 3, select the Heliflow with the next-largest heat transfer surface: 9-14S, with 9.6 ft² heat transfer surface.

To check this selection, read across the table opposite 9-14S and find that at 20 gpm with 18 BWG tubes, tube velocity is 5.63 ft. sec.

Next, determine the fluid viscosity at film temperature. Film temperature is the average temperature plus one-half LMTD for heating, or minus one-half LMTD for cooling.

Film temperature = $\frac{200 + 175}{2} - \frac{108.9}{2} = 133^{\circ}F$

From the flow chart (A.) page 4, 100% Ethylene Glycol at 133°F. has a viscosity of 5.6 centistokes. From 5.63 ft/sec velocity and 5.6 centistokes the tube side film rate is 510. This must be corrected for specific heat, thermal conductivity, and tube diameter. In this case, with ½ inch. tubes, the diameter correction factor is 1.0. From chart (D.), and (E.) page 5, for a specific heat of 0.64 the correction is 0.86 for thermal conductivity of 0.137 the correction is .54.

Corrected tube side rate = (510) (.86) (.54) = 237

The preceding steps are now repeated for the shell side of the unit. From the tables opposite 9-14S, at 20 gpm shell velocity is 6.09 ft/sec. Film temperature is 133° F. From flow chart (**B**.) page 4, at 6.09 ft/sec and 133° F. film rate is 1500. Water rates do not have to be corrected. With the $\frac{1}{2}$ inch tubes of the 9-14S, shell side factor is 1.0.

Now U can be calculated: $\frac{237 (1500)}{237 + 1500} = 205$ btu/hr

This is the clean transfer rate. A design factor of 85% of the clean rate is used unless the fouling properties of the fluids indicate a lower value. For highly-fouling materials a factor as low as 50% would be used.

Design heat transfer rate = (0.85)(205) = 174 btu/hr % ft²

The required heat transfer:

 $\frac{170,240}{(108.9)(174)} = 8.93$ ft².

Thus, the 9-14S provides adequate surface.

Next, pressure drops must be checked. The maximum allowable drop is usually specified. If not, a maximum of 10 to 15 psi is assumed.

From flow chart (**C**.) pages 4 and 5, Curve II, the pressure drop for water at 20 gpm in a 9-14S is 3.0 psi. From flow chart (**F**.) at 5.63 ft/sec and 5.6 centistokes, 100% Ethylene Glycol's pressure drop will be 1.70 times the water pressure drop of 5.1 psi. The shell side pressure drop is read from flow chart (**C**.), Curve II as 3.0 psi.

If a higher pressure drop is acceptable, a smaller unit could be considered, and checked. It would have higher velocities and transfer rates, but also higher pressure drops.

ENGINEERING DATA, Sizes 3-10 to 45-20LL

ENGINEERING DATA, Sizes 10-22S to 45-34LLL

5

Size	Number of Coils	Surface Sq. Feet	Surface Sq. Feet	Surface Sq. Feet	Tube Diam. Inches	Coil Spacing Inches	Coil Length Feet	Free Shell Area	Size	Shell Equiv. Flow	Con- nections Casing	GPM a	at Velocity of	10 FPS	
	cons	1001	Inches	menes	Teet	Sq.		Length	Coil		Coil	- BWG			
						Inches		Feet		Casing	16	18			
3-10	3	1.06	1/2	1/32	2.71	.302	3-10	3.0	1/2	9.4	10.0	11.9			
4-10	4	1.44	1/3	1/3	3.67	.309	4-10	5.35	1/2	9.6	5.9	7.5			
8-10	8	2.56	4	1/8	4.92	.358	8-10	5.7	12	11.1	2.8	4.5			
4-12	4	2.75	1/2	1/25	5.25	.466	4-12	6.5	1 11/4	14.5	13.4	15.8			
6-12	6	4.13	1/2	1/8	5.25	.699	6-12	6.5	1 14	21.8	20.1	23.7			
8-12	8	4.40	3/3	¹ /a	5.51	.618	8-12	7.9	1 14	19.3	11.7	15.0			
12-12	12	6.31	4	1/8	8.11	.537	12-12	9.4	1 14	16.8	4.3	6.8			
9-14S	9	9.63	1/2	¹ /a	8.16	1.04	9-145	9.75	11/4	32.8	30.1	35.5			
12-145	12	11.6	3⁄8	1/8	9.90	.93	12-14S	11.5	1¼	29.0	17.6	22.5			
18-14S	18	11.5	4	346	9.77	1.08	18-145	11.5	11/4	33.8	6.4	10.2			
12-14L	12	13.0	5/0	1/3	6.6	1.94	12-14L	8.25	14	61.0	72.1	82.0			
15-14L	15	16.0	1/2	1/13	8.16	1.75	15-14L	9.75	14	56.4	50.2	59.3			
20-14L	20	19.4	3/8	1/3	9.90	1.55	20-14L	11.5	11/4	48.3	29.3	37.4			
30-14L	30	19.2	14	3∕16	9.77	1.8	30-14L	11.5	14	56.9	10.7	17.0			
30-14LL	30	32.08	1/2	1/6	8.16	3.50	30-14LL	9.75	11/4	109.0	100.0	118.0			
9-16S	9	12.7	1/2	1 /1	10.88	1.04	9-165	13.0	2	32.8	30.1	35.5			
12-16S	12	17.4	3/8	¹∕s	14.79	.93	12-16S	15.5	2	29.0	17.6	22.5			
18-16S	18	17.66	1/4	3/16	15.06	1.08	18-16S	17.5	2	33.8	6.4	10.2			
10-16L	10	15.9	3⁄4	3/16	8.12	2.62	10-16L	9.7	2	81.5	94.3	104.0			
12-16L	12	16.6	5%8	3/16	8.46	2.42	12-16L	11.6	2	75.5	72.1	82.0			
15-16L	15	20.9	1/2	³ /16	10.62	2.23	15-16L	12.75	2	69.5	50.2	59.3			
20-16L	20	21.5	3/8	1/4	10.98	2.48	20-16L	13.1	2	77.4	29.3	37.4			
30-16L	30	29.5	1/4	3/16	15.06	1.80	30-16L	17.3	2	56.9	10.7	17.0			
30-16LL	30	41.72	1/2	3∕16	8.46	4.45	30-16LL	11.6	2	139.0	100.0	118.0			
10-185	10	19.4	34	1/4	9.92	3.09	10-185	12.3	2½	96.3	94.3	104.0			
12-18S	12	24.0	5%1	1/4	12.20	2.88	12-18S	14.5	2½	89.7	72.1	82.0			
15-18S	15	24.5	1/2	1/4	12.4	2.68	15-18S	14.9	2½	83.5	50.2	59.3			
20-18S	20	25.2	3/8	5∕16	12.87	2.95	20-18S	15.5	2½	92.0	29.3	37.4			
20-18L	20	39.2	34	1/4	9.87	6.16	20-18L	12.3	2½	193.0	188.0	208.0			
24-18L	24	48.0	5/8	1/4	12.20	5.76	24-18L	14.5	2½	180.0	145.0	163.0			
30-18L	30	48.9	1/2	1/4	12.38	5.37	30-18L	14.9	2½	168.0	101.0	119.0			
45-18LL	45	73.02	1/2	1/4	12.38	8.03	45-18LL	14.9	2½	250.0	150.0	178.0			
10-20S	10	27.0	3/4	1/4	13.78	3.09	10-205	17.1	21/2	96.3	94.3	104.0			
12-20S	12	31.3	5/1	14	15.93	2.88	12-20S	18.95	2½	89.7	72.1	82.0			
15-205	15	31.9	1/2	14	16.25	2.68	15-205	19.5	2½	83.5	50.2	59.3			
20-20S	20	32.2	3/11	5/16	16.42	2.95	20-205	16.6	2½	92.0	29.3	37.4			
20-20L	20	54.0	3/4	14	13.78	6.16	20-20L	17.1	21/2	193.0	188.0	208.0			
24-20L	24	62.6	5/8	14	15.93	5.76	24-20L	18.95	2½	180.0	145.0	163.0			
30-20L	30	63.8	1/2	14	16.25	5.37	30-20L	19.5	2½	168.0	101.0	119.0			
45-20LL	45	95.72	1/2	1/4	16.25	8.03	45-20LL	19.5	2½	250.0	150.0	178.0			

Size	Number of Coils	Surface Sq. Feet	Tube Diam. Inches	Coil Spacing Inches	Coil Length Feet	Free Shell Area	Size	Shell Equiv. Flow	Con- nections Casing	GPM at	Velocity o	f 10 FPS
						Sq.		Length	Coil		Coil	BWG
						Inches		Feet		Casing	16	18
10-225	10	29.8	4	5/16	15.20	3.59	10-225	18.25	2½	112.0	94.3	104.0
12-225	12	35.5	%	7/16	18.13	3.35	12-22S	21.2	2½	104.0	72.1	82.0
15-22S	15	37.5	12	⁵ /16	19.25	3.16	15-225	22.2	2½	98.5	50.2	59.3
20-22L	20	59.6	3/4	5/16	15.20	7.10	20-22L	18.25	<u>2½</u>	222.0	,188.0	208.0
24-22L	24	70.3	物	⁵ /16	18.13	6.68	24-22L	21.2	2½	209.0	145.0	163.0
30-22L	30	75.0	1/2	⁵ ⁄16	19.14	6.30	30-22L	22.2	21/2	196.0	101.0	119.0
45-22LL	45	112.6	1/2	⁵%6	19.14	9.43	45-22LL	22.2	2½	294.0	150.0	178.0
10-245	10	40.3	3/4	⁵ /16	20.61	3.59	10-24S	24.0	21/2	112.0	94.3	104.0
12-24S	12	46.8	5/3	⁵ /16	23.87	3.35	12-245	27.25	2½	104.0	72.1	82.0
15-245	15	54.0	1/2	5/16	27.50	3.16	15-24S	30.8	2½	98.5	50.2	59.3
20-24L	20	80.6	4	⁵ /16	20.61	7.10	20-24L	24.0	21/2	222.0	188.0	208.0
24-24L	24	93.6	⁵ ⁄a	5/16	23.87	6.68	24-24L	27.25	21/2	209.0	145.0	163.0
30-24L	30	108.0	1/2	⁵ /16	27.50	6.30	30-24L	30.8	2½	196.0	101.0	119.0
36-24LL	36	140.6	5%8	5/16	23.87	10.05	36-24LL	27.25	2½	314.0	215.0	244.0
10-26S	10	50.76	34	⁵ /16	25.81	3.59	10-265	29.5	21/2	112.0	94.3	104.0
12-265	12	57.66	5%	5/16	29.36	3.35	12-26S	33.4	21/2	104.0	72.1	82.0
15-26S	15	66.07	1/2	⁵ /16	33.41	3.16	15-26S	37.2	2½	98.5	50.2	59.3
20-26L	20	101.52	3/4	5∕16	25.81	7.10	20-26L	29.5	2½	222.0	188.0	208.0
24-26L	24	115.32	5/13	5∕16	29.36	6.68	24-26L	33.4	2½	209.0	145.0	163.0
30-26L	30	132.15	1/2	546	33.41	6.30	30-26L	37.2	21/2	196.0	101.0	119.0
36-26LL	36	166.5	5%	5/16	29.36	10.05	36-26LL	33.4	21/2	314.0	215.0	244.0
10-28S	10	66.29	3/4	⁵ /16	33.75	3.59	10-285	38.0	3	112.0	94.3	104.0
12-285	12	74.95	5/8	5⁄16	38.05	3.35	12-28S	42.1	3	104.0	72.1	82.0
15-28S	15	84.87	1/2	5/16	43.20	3.16	15-28S	47.9	3	98.5	50.2	59.3
20-28L	20	132.58	34	546	33.75	7.10	20-28L	38.0	3	222.0	188.0	208.0
24-28L	24	149.9	5/8	546	38.05	6.68	24-28L	42.1	3	209.0	145.0	163.0
30-28L	30	169.74	1/2	5/16	43.20	6.30	30-28L	47.9	3	196.0	101.0	119.0
30-28LL	30	198.9	3/4	5/16	33.75	10.62	30-28LL	38.0	3	332.0	282.0	312.0
45-28LLL	45	298.2	-74	5/16	33.75	15.9	45-28LLL	38.0	3	498.0	474.0	470.0
10-305	10	79.0	3/4	5/16	40.30	3.54	10-30S	45.3	3	112.0	943	104.0
20-30L	20	158.0	34	5/16	40.30	7.08	20-30L	45.3	3	222.0	188.0	208.0
30-30LL	30	237.0	-1/4	5/16	40.30	10.62	30-30LL	45.3	3	332.0	282.0	312.0
45-30LLL	45	355,9	3/4	5/16	40.3	15.9	45-30LLL	45.3	3	498 O	474.0	470.0
10-32S	10	94.0	3/4	5/16	47.72	3.54	10-325	53.4	3	112.0	94 3	104.0
20-32L	20	188.0	34	5/16	47.72	7.08	20-321	53.4	3	222 N	188.0	208.0
30-32LL	30	282.0	3/4	5/16	47.72	10.62	30-3211	53.4	3	332.0	282 n	312.0
45-321LL	45	423.0	3/1	5/16	47.72	15.9	45-3211	53.4	2	102.0 102.0	424.0	470.0
10-34S	10	109.0	3/1	546	55 58	3.54	10-345	62.2	2	112.0	424.U 04.2	104.0
20-34L	20	218.0	3/1	544	55.50	7 08	20-345	67.7	ر د	112.U 222.0	1000	104.0
30-34LL	30	327.0	3/4	546	55 58	10.62	30-3411	62.2	ר ב	222.0	100.U	200.0 212.0
45-34111	45	490 5	3/,	56-	55.50	15.02	72-34LL	67.2	נ ר	332.U 408.0	404.0	312.0
	10		111	710	しいいいし	1.3.3	43-34666	UZ.Z	3	430.0	- 424.0 3	470.0

ENGINEERING DATA, Sizes 3-10 to 45-20LL

Size	Number of Coils	Surface Sq. Feel	Tube Diam. Inches	Coil Spacing Inches	Coil Length Feet	Free Shell Area	Size	Shell Equiv. Flow	Con- nections Casing	GPM a	Velocity of	10 FPS
						Sq.		Length	Coil	<i>.</i>	- Coil -	BWG
2 10	7	1.06	14	34-	3 77 1		2 10	<u>Feel</u>	14	Casing	100	110
3*10 //10	2 4	1.00	12 34.	1/32 1/.	2/1	200	5-10 4-10	535	12 16	9.4	50	11.7
9-10	44 Q	2.44	78 17	14.	3.07	259	4-10 8-10	57	14	9.0 11.1	22	7.5
4 10	4	2.50	14	78 17.	5.05	466	4-12	5.7	1 14	1/1.5	13.4	15.8
4-12	4	4.13	14	78 16	5.25	400	6-12	65	1 114	21.9	20.1	73.7
8.17	8	4.15	36	14	5.25	618	8-12	70	1 14	107	117	15.0
12.12	12	6 31	1/1	16	811	537	12.12	94	1 14	16.8	43	6.8
9.145	9	9.63	16	14.	816	1 04	9-145	975	11/4	32.8	30.1	35.5
17.145	12	116	3/0	14,	9 90	93	12-145	115	11/4	29.0	176	225
18-145	18	115	14	346	9.77	1.08	18-145	115	11/4	33.8	6.4	10.2
12-14	12	13.0	5/1	1/8	66	194	12-14	8 25	11/4	61.0	72 1	82.0
15-141	15	16.0	1/6	1/4	816	1 75	15-141	975	11/4	56.4	50.2	59.3
20-141	20	19.4	34	14	9 90	1.55	20-14L	115	11/4	48.3	29.3	37.4
30-14L	30	19.2	1/4	3/16	9.77	1.8	30-14L	11.5	14	56.9	10.7	17.0
30-14LL	30	32 08	1/2	1/1	8 16	3 50	30-14LL	9.75	11/4	109.0	100.0	118.0
9-16S	9	12.7	1/2	1/4	10.88	1 04	9-16S	13.0	2	32.8	30.1	35.5
12-165	12	17.4	3/9	1/8	14.79	.93	12-16S	15.5	2	29.0	17.6	22 5
18-165	18	17 66	4	346	15.06	1 08	18-16S	17.5	2	33.8	6.4	10 2
10-16L	10	159	3/4	346	8.12	2.62	10-16L	9.7	2	81.5	94 3	104 0
12-16L	12	16.6	5%	3/16	8.46	2.42	12-16L	11.6	2	75.5	72.1	82.0
15-16L	15	20 9	1/2	3/16	10.62	2.23	15-16L	12.75	2	69 5	50.2	59.3
20-16L	20	21.5	3/8	4	10.98	2 48	20-16L	13.1	2	77 4	29.3	37.4
30-16L	30	29.5	1/4	3/16	15.06	1 80	30-16L	17.3	2	56.9	107	17.0
30-16LL	30	41.72	1/2	3/16	8.46	4.45	30-16LL	116	2	139.0	100.0	118.0
10-18S	10	19.4	3/4	1/4	9.92	3.09	10-185	123	2½	96.3	94.3	104.0
12-185	12	24.0	5/8	14	12.20	2 88	12-18S	14.5	2½	89.7	72.1	82.0
15-18S	15	24 5	1/2	1/4	12.4	2.68	15-18S	14.9	21/2	83.5	50.2	59.3
20-18S	20	25 2	38	5/16	12.87	2.95	20-18S	15.5	2½	92 0	29.3	37 4
20-18L	20	39.2	3/4	4	9.87	616	20-18L	12.3	2½	193.0	188.0	208.0
24-18L	24	48.0	5/8	1/4	12.20	5.76	24-18L	14.5	2½	180.0	145.0	163.0
30-18L	30	48.9	1/2	14	12.38	5 37	30-18L	14.9	21/2	168.0	101.0	1190
45-18LL	45	73.02	1/2	/4	12.38	8 03	45-18LL	14.9	21/2	250.0	150.0	178.0
10-20S	10	27.0	3/4	4	13 78	3 09	10-205	17.1	21/2	96.3	94.3	104.0
12-205	12	31.3	5/8	4	15.93	2 88	12-205	18.95	2½	89.7	72.1	82.0
15-205	15	319	1/2	4	16.25	2.68	15-20S	19.5	2½	83.5	50.2	59.3
20-205	20	32 2	1/1	76	16.42	2 95	20-20S	16.6	21/2	92.0	29.3	37.4
20-20L	20	54.0	34	4	13.78	6.16	20-20L	17.1	2½	193.0	188.0	208.0
24-20L	24	62.6	*/	4	15.93	5.76	24-20L	18 95	2½	180.0	145.0	163.0
30-20L	30	638	1/2	4	16.25	5.37	30-20L	19.5	2½	168 0	101.0	119.0
45-20LL	45	95.72	1/2	1/4	16.25	8.03	45-20LL	19.5	2½	250 0	150 0	1780

ENGINEERING DATE, Sizes 10-22S to 45-34LLL

1

sî L

Size	Number of Coils	Surface Sq. Feet	Tube Diam. Inches	Coil Spacing Inches	Coil Length Feet	Free Shell Area	Size	Shell Equiv. Flow	Con- nections Casing	GPM at	Velocity of	10 FPS
			mento	menes		Sq. Inches		Length Feet	Coil	Casing	Coil-I	BWG
10-225	10	29.8	3/4	5/16	15.20	3.59	10-225	18.25	21/2	112.0	94.3	104.0
12-225	12	35 5	⁵ /8	5/16	1813	3.35	12-225	21.2	21/2	104.0	72.1	82.0
15-22S	15	37.5	1/2	⁵ /16	19.25	3.16	15-22S	22.2	21/2	98.5	50.2	59.3
20-22L	20	59.6	34	⁵ /16	15.20	7.10	20-22L	18.25	2½	222.0	188 0	208.0
24-22L	24	70.3	5/3	546	18 13	6.68	24-22L	21.2	21/2	209.0	145.0	163.0
30-22L	30	75.0	1/2	5/16	19.14	6 30	30-22L	22.2	21/2	196.0	101 0	119.0
45-22LL	45	112.6	1/2	5⁄16	19.14	9 43	45-22LL	22.2	21/2	294.0	150 0	178.0
10-24S	10	40 3	3/4	⁵ /16	20.61	3 59	10-24S	24.0	2½	112.0	943	104.0
12-245	12	46.8	5/4	5∕16	23.87	3 35	12-24S	27 25	21/2	104.0	72.1	82.0
15-245	15	54.0	1/2	⁵ /16	27.50	3.16	15-24S	30.8	21/2	98.5	50.2	59.3
20-24L	20	80.6	3/4	⁵ /16	20.61	7.10	20-24L	24.0	21/2	222.0	188 0	208.0
24-24L	24	936	5%	5/16	23.87	6.68	24-24L	27.25	21/2	209.0	145 0	163.0
30-24L	30	108 0	1/2	5/16	27.50	6.30	30-24L	30.8	21/2	196.0	101.0	119.0
36-24LL	36	140.6	荡	3∕16	23.87	10.05	36-24LL	27.25	21/2	314 0	215.0	244.0
10-265	10	50.76	3/4	5/16	25.81	3.59	10-26S	29.5	21/2	112.0	94.3	104.0
12-26S	12	57.66	5/8	5/16	29.36	3.35	12-26S	33.4	2½	104.0	72.1	82.0
15-26S	15	66.07	1/2	5/16	33.41	3 16	15-26S	37.2	21/2	98 5	50.2	59 3
20-26L	20	101 52	3/4	5∕16	25.81	7 10	20-26L	29.5	21/2	222.0	188 0	208 0
24-26L	24	115.32	⁵ /8	×6	29.36	6 68	24-26L	33.4	21/2	209.0	145.0	163 0
30-26L	30	132.15	1/2	⁵ /16	33.41	6 30	30-26L	37.2	21/2	196.0	101.0	119.0
36-26LL	36	166 5	5/8	5/16	29.36	10 05	36-26LL	33.4	2½	314.0	215 0	244 0
10-28S	10	66 29	34	⁵ /16	33.75	3 59	10-285	38.0	3	112.0	94 3	104 0
12-28S	12	74.95	5/8	5/16	38 05	3 35	12-285	42.1	3	104.0	72 1	82.0
15-28S	15	84.87	1/2	5/16	43 20	3 16	15-28S	47.9	3	98.5	50.2	59.3
20-28L	20	132 58	34	546	33.75	7.10	20-28L	38.0	3	222.0	188 0	208.0
24-28L	24	149.9	5/8	⁵ /16	38.05	6.68	24-28L	42.1	3	209.0	145.0	163.0
30-28L	30	169.74	1/2	⁵ /16	43.20	6.30	30-28L	47 9	3	196.0	101.0	119.0
30-28LL	30	198.9	3/4	5/16	33 75	10.62	30-28LL	38.0	3	332.0	282.0	312.0
45-28LLL	45	298.2	3/4	5/16	33 75	15.9	45-28LLL	38.0	3	498.0	424.0	470.0
10-305	10	79.0	3/4	⁵ /16	40.30	3 54	10-30S	45.3	3	112.0	94.3	104.0
20-30L	20	1580	3/4	5/16	40.30	7.08	20-30L	45.3	3	222.0	188 0	208.0
30-30LL	30	237 0	3/4	5/16	40.30	10.62	30-30LL	45 3	3	332.0	282 0	312.0
45-30LLL	45	355 9	3/4	5/16	40 3	15.9	45-30LLL	45.3	3	498.0	424 0	470.0
10-325	10	94 0	3/4	5/16	47 72	3.54	10-325	53.4	3	112.0	94 3	104.0
20-32L	20	188 0	3/4	⁵ /16	47 72	7.08	20-32L	53 4	3	222.0	188.0	208.0
30-32LL	30	282 0	3/4	5⁄16	47 72	10.62	30-32LL	53.4	3	332.0	282 0	312.0
45-32LLL	45	423 0	3/4	⁵ /16	47.72	15.9	45-32LL	53.4	3	498.0	424 0	470.0
10-345	10	109 0	3/4	\$/16	55 58	3 54	10-34S	62.2	3	112.0	94 3	104.0
20-34L	20	218.0	3/4	5/16	55.58	7 08	20-34S	62.2	3	222.0	188 0	208.0
30-34LL	30	327.0	3/4	⁵ ∕16	55 58	10.62	30-34LL	62.2	3	332.0	282 0	312.0
45-34LLL	45	490.5	34	⁵ /16	55.58	15.9	45-34LLL	62.2	3	498.0	424.0	470.0

(A.) VISCOSITY vs TEMPERATURE °F

17

18

23 22

21

23

20

- 8

21 19

17

19

18

Graham Manufacturing Co., Inc. 20 Florence Avenue, P.O. Box 719 Batavia, New York 14021-0719 Phone: 1-716-343-2216 FAX: 1-716-343-1097 Website: http://www.graham-mfg.com Email: equipment@graham-mfg.com

(C.) DETERMINATION OF PRESSURE DROP

HELIFLOW

SIZE

30-32LL

10-34S

20-34L

30-34LL

45-32LLL

45-34LLL

21

14 18

21

23 22

-

15

CURVE NO. UBE CASING

TUBE

CURVE NO. TUBE CASING

HELIFLOW

SIZE

15-20S

20-205

20-20L

24-20L

30-20L

45-20LL

_10-22S

5

C	D*	G	Н	L	М	Ν	Р	R	S	T	υ	V
1/4	1/2	34	7/a	31/16	5%	1%	2	2º%	2	3	41%6	3%
12	1/2	%	74	3%	5%	1%	2	227/32	2	3	5%	4
1%	1	1	1%	4%	7%ь	1%	2%	3%	3	3	6%	4
1%	1	1	1%	4%	7%	1¼	2%	3%	3	3	7%	5
1%	1%	15/16	1%	5%	9	2%	3	4	3	3%	9%	6
1%	14	13/16	1%	5%	9	2%	3	4	3	3%	12%	9
2	2	1%	1%	67/	11	2%	3%	5	3%	3%	10%	7
2	2	1746	1%	6%	11	2%	3%	5	3%	3%	13%	10
2	2	1746	1%	6%	11	2%	3%	5	3%	3%	21	18
- 2%	2%	1 %	11%	8	13	2%	4	6%	44	3%	14%	10
2%	2%	11%	11%	8	13	2%	4	6%	4%	3%	21%	18
2%	2%	1^{13} /m	1%	9	14	2%	4%	6	4	3%	14%	10
2%	2½	11%	1'%	9	14	2%	4%	6	4	3%	22	18
2%	2%	2%	2	10%	15%	2%	4%	6%	4	3%	14%	10
2%	2%	21/4	2	10%	15¼	2%	4½	6%	4	3%	22%	18
2%	2%	2%	2%	12	17	2%	4½	6%	4	3%	14%	10
2%	2%	2%	2%	12	17	2%	4%	6%	4	3%	223%	18
2%	2%	2%	2%	1%	18%	2%	5	6%	3%	4	14%	10
2%	2%	2%	2%	13	18%	2%	5	64	3%	4	22%	18
3	3	2%	2%	14%	21%	2¼	6	7%	4	4	141%	10
3	3	2%	2%	14%	21%	2%	6	7%	4	4	211%	18
					L			l		· · · · ·		·

G	н	L	М	N	Р	R	5	Т	U	V	W
7a	<i>%</i>	3%6	9%	3%	3%	4%	1%	4%	5%	4	1
1/a	‰	3%	9%	3¼	3%	4%	1% -	4¼	5%	5	1
1	1%	4¼	10%	3%	4	5%	27/16	4%	7%	5	1
1	1%	4¼	10%	3%	4	5%	2%ь	4 %	8 %	6	1
15/16	1%	5%	11%	2%	3%	5	2%	4%	9%	8	1
15/16	1%	5%	12%	2%	3%	5	2½	4%	$12^{1}\%$	11	1
17/16	1%	5%	12%	2%	3%	5	2%	4%	20%	19	1
$1\%_{6}$	1%	6%	13%	3	4	6¼	21%	5	10%	8	1½
1%	1%	6%	13%	3	4	6%	211/16	5	13%	11	1½
1%	1%6	6%	13%	3	4	6%	21%	5	20%	19	1%
11%	1%	8	15	3%	4	6%	3¼	5%	14	12	1 %6
12%6	11%	8	15	3%	4	6%	31/4	5%	21%	19	1%
11%6	11%6	9	16	3%	4½	6%	3%	5%	14¼	12	1%
11%6	11%	9	16	3%	4%	6%	3¼	5%	21%	19	1%
2%	2	10%	17	3%	4%	7%	3 1/16	5%.	144	12	1%
2%	2	10%	17	313/16	4½	7%	3%6	5%	21%	19	1%
2%	2	10%	17	311/16	4%	7%	3%	5%	29%	27	1%
2%	2%	12	18%	315/16	4%	7%6	31/16	5%	14%	12	2%
2%	2%	12	18%	31%6	4½	7%6	31/16	57/6	<u>22</u> %	19	2%
2%	<u>2%</u>	13	19%	41/16	5%	8%	21%	5%6	14%	12	2%
2%	2%	13	19%	41/14	5%	8%	21%	5%	22%	19	2%
2%	2%	14%	21%	4%	6	8%	3%	51%	15%	12	2%
2%	2%	14%	21%	4 %6	6	8%	3%6	51%6	22%	19	24

	L	M	N	Р	R	S	Т	U	V	W	Y
Ис	8	15	13	4	6%	3¼	1%	29	24	1%	30
¥6	9	16	14	4½	6%	3¼	1%	29%	24	1%	32
	10%	17	15	4%	7%	31/6	1%	29%	24	1%	34
,	12	18%	16%	4%	7%	3%6	1%	21%	17	2%	37
	12	18%	16%	4%	7%	3%	1%6	29%	25	2%	37
	13	19%	17%	5%	8%	21%	1%	21%	17	2¼	39
,	13	19%	17%	5%	8%	215/6	1%	29%	25	2%	39
1	14%	22	19%	6	8%	3%	2	22%	18	2%	44
,	14%	22	19%	6	8%	3%	2	30%	25	2%	44
ı	14%	22	19%	6	8%	3%	2	41%	38	2%	44
۰ ۱	15%	23	21%	6	8%	3%	2	23%	18	1 %	46
;	15%	23	21%	6	8%	3¼	2	31	25	1%	46
;	15%	23	21%	6	8%	3¼	2	38%	38	1%	46
5	16%	24%	22%	6%	9%	3¼	2	23%	18	2%	48%
,	16%	24%	22%	6%	9%	3%	2	30%	25	2%	48%
1	16%	24%	22%	6%	9%	3%	2	38%	39	2%	48%
1	18%	26	24%	6%	9%	3%	2%	24	18	1%	52
1	18%	26	24%	6%	9%	3%	2%	31	26	1%	52
1	184	26	24%	6%	9%	3%	2%	38%	40	1%	52

All dimensions are in inches. Dimensions are subject to change, depending on customer requirements and design conditions.

7

PHYSICAL PROPERTIES FOR MISCELLANEOUS COMPOUNDS.

Organic Liquids

Organic Liqui	IIC LIQUIDS M.W. M.P. B.P. Sp. Gr. Sp. Ht. L.H. k. 4.44°C 26.7°C 48.9°C											
Name	M.W.	M.P	B.P.	Sp. Gr	Sp. Ht	L.H.	k	4.44°C 40°F	26.7°C 80°F	48.9°C 120°F	71.1°C 160°F	
Water	18	32	212	1 00	1.00	970	356	1 55	861	56	40	
Acetaldehyde	44	-1913	71.6	783		246		.27				
Acetic Acid	60	62	245	1 05	48	175	095	1 65	1 18	85	65	
Acetone	58	-137	133	789	514	225	.096	.4	32	26		
Benzaldehyde	106	-70	355	1 043	43	156						
Benzene	78	218	176	.872	45	170	.087	120	62	46	30	
Benzyi Alconol	108	5	401	104	52	203	005	120	48	27	1./	
Carbon Disubstide	74	-130	1155	1200	20	250	095	4.0	20	1.55	93	
Carbon Tetrachloride	154	-170	170	1 203	24	84	091	42	.30	7	53	
Chlorobenzene	1125	49	269	1 101	21	140	083	1 16	83	67	46	
Chloroform	1194	-83	142	148	74	107	08	68	55	45		
Cyclohexane	84	20.5	177.5	774	44	155		1 25	86	61		
Cyclobexanone	98	-49	311	947	431						1	
Decane	142	-22	345	73	.43	109	083		75			
Diethyl Aniline	149	30	421	934	452	140						
Diethyl Phthalate-o	222		569	1 1 2 1								
Dimethyl Aniline	121	36 5	379	956	403	144	_		·			
Diphenyl	154	157	491	992	450	120	08					
Dipropyl Ether	102	76	156	725								
Dowtherm—A	166	54	500	995	63	123	80		*******			
DowthermSK-T		110	600	1 10	35-65	105	08					
Ethyl Acetate	88	-119	1/1	895	46	185	.101	.58	45	35	28	
Elnyi Alconoi	40		1/3	/85	54	370	087	1.7	11	.74	51	
Ethyl Bromido	100	-137	2/7	1 45	41	147	002	.92	20	. 54	45	
Ethyl Chlorido	645		54	0.45	38	167	07	30				
Ethyl Ether	74	-177	94	708	55	152	00	28	22			
Ethylene Dichloride	99	-31	183	1 246	31	140		1 06	77	59	46	
Ethylene Glycol	62	12.5	387	1 11	58	346	153	44.0	190	90	45	
Glycerol	<u>92</u>	-0.4	554	1.26	58	340	164		490.0	130.0	56.0	
Heptane	100	-130	209	684	52	138	081	5	.4	32	26	
Hexane	86	-137	156	66	54	144	.08	39	.31	26		
Isobutane	58	-229	14	603	.550	150						
Isobutyl Acetate	116	-146	244	871	.459	132						
Isobutyl Alcohol	74	-163	226	798	60	250	.091	7.2	3.6	19	1.0	
Isopropyl Alcohol	60	-130	180	781	64	288	09	36	20	1.13	68	
Maleic Anhydride	98	136	395	15								
Methyl Acetate	74	-146	139	924	468	178		.48	38	30		
Methyl Alcohol	32	-142	148	/86	60	4/0	114	.78	.50	42		
Melnyi Elnyi Kelone	72	-123	1/5	.89	55	192	0.060	.52	6 717	.33	20	
Naphthalana	178	180	474	1 1 45	45	125	0.002	14.30	0713	3.33	23	
Nitro Reozene	120	21.5	410	12	34	143	00		19	13	q	
Nitromethane	61	-193	215	1 1 38	47	744	12		<u> </u>	<u> </u>		
Nitrotoluene—o	137	3	432	1 163	_			33	22	1.5	1.05	
Octane	114	-70	258	703	.58	128	081	69	52	42	.34	
Pentanen	72	-201	97	630		150	.08	28	23			
Phenol	94	105 6	360	1.07	56					39	2.1	
Phthalic Anhydride	148	267	544	1 527								
Propane	44	-304	44	585	576	160	08		l	—		
Propyl Alcohol—n	60	-197	208	804	590	296		36	2.10	1.3	8	
Syltherm XLT		_		083	0 396		0.0614	19	1 35	0.98	075	
Tetrachlorethylene	166	-2	249	1 624	215	90		11	85	.70	55	
Tetranitromethane	196	55	258	1.65	0.4770		0.0707	20 75	120	n 70		
Inerminal 44		120	331	0.918	0.473	1	0.0797	29.75	128	8.78	3.51	
roiuene Trichlarathulana	92 121 E	-139	251	1 456	42	15/	084	/5	5/	45	30	
Trichloreinylene	1015	-99	100	974	42	104	00	10	50	49	41	
MW. (Molecular Weight) MI	P (Meltine Poin	1 - 10.0	i 207 ilina Point "°F	1 .074 almos l: Sn f	i .4.4 Se ISpecific Cos	UCI Nitiv at mom te	i JUD : amm ir Sn Ht	I 1.U Koecilir Heat al	i ./ O	IU. IH (Index) Ha	<u>i .40</u> atin	

M.W. (Molecular Weight); M.P. (Melting Point, °F); B.P. (Boiling Point –°F—atmos.); Sp. Gr. (Specific Gravity at room temp.); Sp. Ht. (Specif. BTU/#—atmos. (Increase 10%-20% for high vacuum); k—{Thermal Conductivity in BTU/hr/sq. ft./°F/tt. at room temp.); Viscosity (Centipoises)

Water Solutions

valer solutions						VISCOSITY		
Name	Sp. Gr.	Sp. Ht.	k	-12.2°C 10°F	4.44.°C 40°F	26.7°C 80°F	48.9°C 120°F	71.1°C 160°F
26% Ammonia	905	10	26		1.8	1.2	I	
Brine—25% CaCl2	1 2 3	.7	.28	80	45	2.1	l	
Brine—25% NaCl	1 1 9	8	.24	48	3.3	2.1		
40% Ethyl alcohol	94	95	.22	96	52	25	1 23	65
31.5% Hydrochloric Acid	115	6			2.5	1 85	1.42	1.1
50% Glycerine	1 1 3	8	.23	_	11.0	54	2.8	15
40% Methyl Alcohol	.94	92	.23	5 5	3.4	18	10	57
95% Nitric Acid	1 503			19	1.5	1.1	.83	65
60% Nitric Acid	1 375			47	34	2.2	1.5	1.05
50% Sodium Hydroxide	1 53	78	—			60	19	8
30% Sodium Hydroxide	1 3 3	84				9.6	45	2.5
60% Sucrose (cane sugar)	1 2 9		l			41	14	7
40% Sucrose	1 1 8				12	5	2 5	16
20% Sucrose	1 08		l —		32	1.6	.98	68
98% Sulfuric Acid	1 84	35	.15		46	23	11.5	64
60% Sulfuric Acid	1 50	.58	.24	_	9.5	60	39	2.7
Water	1.00	1.00	.34		1.55	0.861	0.56	0.40

ſ

8

Viscosity—Expressed in centipoises

Sp. Gr.—Specific Gravity (approx.) at room temperature Sp. Ht.—Specific Heat (approx.) at room temperature k—Thermal Conductivity in BTU/ht/sq. (f/2*/it. (room temp)
Viscosity—Expressed in centipoises

HttF-31_103_20M_Period.

HHE-31 1/93 20X1 Printed in USA @ Graham Manufacturing Co. Inc. 1993 Graham and Heliflow are trademarks
